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• All posts within the Reddit anhedonia forum between 2017 and 2022 were 
downloaded. Existing code was adapted to prepare the data for NLP through 
tokenization, stop-word removal, and lemmatization. 

• Six unsupervised machine learning (ML) algorithms (including sentiment analyses, 
clustering algorithms, and topic models) were used to identify patterns associated with 
anhedonia among 9,887 posts, which were then interpreted by a team of humans.
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• Axtria identified and collected posts from various mental health communities or 
‘subreddits’ on Reddit.​

• Axtria aimed to identify a user's mental disorder, focusing particularly on anhedonia, 
alongside depression, anxiety, bipolar disorder, and borderline personality disorder 
(BPD).

• Anhedonia is the loss of pleasure or interest in activities that were once enjoyable.

• Traditional diagnostic methods can be subjective and may not accurately capture the 
complexity of depression. 

• To address this need, Axtria explored the use of NLP techniques to develop a          
proof-of-concept project for classifying anhedonia from other types of depression.
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CONCLUSIONS
• Applying NLP-based methods to social media revealed anhedonia-

associated language. Words strongly linked to the topic of anhedonia 
could help identify anhedonia-related content in other datasets. 

• Future analyses may help identify undiagnosed individuals using 
informed models and large standardized datasets such as electronic 
health records and patient health questionnaires.

• For next steps, Axtria seeks to:
o Improve pre-processing

o Increase data size from 20,000 posts to one million posts

o Improve feature extraction

o Implement neural network and supervised learning to classify 
anhedonia from other types of depression

PRELIMINARY ANALYSES

Figure 1. Number of Posts in Each Depression-related Subreddit for the Past 5 years

• Axtria’s preliminary analysis used data from the Depression subreddit between         
May 2018 and April 2023

• Results showed feasibility of select phrases to capture anhedonia patterns (Table 1)

• The number of posts from multiple depression-related subreddits peaked in 2019 
and 2020, and has been declining since

Table 1. Summary of Data for Past 5 Years in Each Depression-related Subreddit

• Textblob is a python library for performing NLP 
tasks using a pattern-based approach to 
determine the sentiment of a piece of text; the 
presence of certain words and phrases indicates 
a Positive, Negative, or Neutral sentiment.

• Pros:
o Simple to use
o Pre-trained sentiment analyzer
o Provides a polarity score (from -1 to 1)

• Cons:
o May not be as accurate
o Limited ability to capture nuanced language 

and context

• Figure 2 shows the sentiment for Anhedonia on 
Reddit is Neutral

• VADER uses a combined approach: a pre-defined 
lexicon of words and phrases, as well as rules that 
consider context and grammar.

• Pros:
o Good at capturing sentiment in informal text
o Performs well in identifying sarcasm and irony
o Provides a polarity score, as well as separate 

positive, negative, and neutral scores.
• Cons:

o May not perform as well on domain-specific text 
or text outside its pre-defined lexicon

• Figure 3 shows a neutral overall sentiment; 
however, positive sentiments are not that positive 
while negative sentiments are very negative.

Figure 2. Sentiment Analysis with TextBlob

Figure 3. Sentiment Analysis with VADER

TERM FREQUENCY-INVERSE DOCUMENT FREQUENCY

Phrases used in depression subgroups (subreddits)* (N=969,357)

Anhedonia 7,137 (0.7%)

No Interest/ No Motivation/ Lost Interest/ Lack of Interest 12,595 (1.3%)

Fatigue 4,616 (0.5%)

Any of the above 24,348 (2.4%)

Latent Dirichlet Allocation (LDA)

• A generative probabilistic model 
that aims to uncover the underlying 
topics in a corpus of text

• Helps with the assignment of 
documents to those topics based on 
the distribution of words in the 
document

Non-Negative Matrix 
Factorization (NMF)

• Technique that aims to factorize 
the term-document matrix into a 
lower-dimensional 
representation of topics, and a 
set of weights, that represent the 
importance of each topic in each 
document

• Clustering groups similar data points into categories based on similarity. 
A clustering algorithm might identify a group of posts that discuss 
feelings of emptiness or lack of motivation, which could be indicative of 
anhedonia.

• K-means is a simple and efficient algorithm that can group data points 
into “k” clusters, where k is the number of clusters specified by the user.

• Initial centroids are chosen randomly from the data points. Each data 
point is assigned to the nearest centroid based on similarity. Centroids 
are recalculated until convergence. For k=3, we have the following 
results:
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Figure 6. Topic Modeling with LDA
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Figure 7. Topic Modeling with NMF

Figure 4. Sentiment Analysis with TF-IDF

Figure 5. Results for Clustering 

• X-axis: TF-IDF (Term Frequency-Inverse Document Frequency) score

o Relative measure of the importance or relevance of each phrase within the analyzed collection of documents
o Higher TF-IDF scores indicate a phrase is relatively more significant and distinct

• Broader search using TF-IDF showed “feeling” and “causation” ranked among the most common phrase 
groupings in posts about anhedonia
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