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Introduction 

Randomized controlled trials (RCTs) represent the primary 

mechanism for establishing the safety and efficacy of a 

treatment compared to placebo or a comparator.1 RCTs 

achieve unbiased estimates for causal relationships 

between treatments and endpoints through randomization. 

However, their narrow enrollment criteria and standardized 

treatment protocols result in limited interpretation to 

real-world populations in routine clinical practice, where 

treatment decisions are made according to patient health 

characteristics, socioeconomic factors, personal beliefs 

and values, physician discretion, insurance coverage, and a 

myriad of other uncontrolled factors. Therefore, stakeholders 

are increasingly interested in utilizing real-world evidence 

(RWE) to support decision-making and the development 

of clinical practice recommendations. As such, guidance is 

emerging on the use of real-world data (RWD) and simulation 

modeling in settings where these methodologies may be 

more appropriate than RCTs.1,2 

The recent widespread use of electronic health records 

(EHR) and expanding interest in developing registries has 

resulted in an increased abundance of RWD available for 

secondary analysis. However, gaps in the data and short 

durations of follow-up relative to the entire patient lifetime, 

as well as limited ability to link patient records between 

different sources, can present issues in using RWD to predict 

the effect of therapy on health outcomes, quality of life, 

and healthcare costs and utilization. Traditional statistical 

methods, including regression and propensity score 

matching analyses, have several drawbacks: they are biased 

by confounding, can only provide results for associations 

between independent predictors and/or interaction terms 

and model outcomes, cannot account for time-varying effects 

or changes in treatment protocol post-index, are subject 

to reverse causality, and cannot establish true causation 

between exposure and outcome.3 

The challenges described above can be overcome with a 

strong study design and use of Monte Carlo simulation, also 

known as the Monte Carlo Method or a multiple probability 

simulation. This method allows for prescriptive and/or 

counterfactual analytics which can be used to generate 

meaningful clinical insights from RWD.4 It is a mathematical 

technique that relies on repeated random sampling to predict 

a set of outcomes based on an estimated range of input 

values. A Monte Carlo simulation will model a given process 

at the micro-level (e.g., at a patient-level) via explicit handling 

of uncertainty, and then aggregates the results to summarize 

the emergent population characteristics at the macro-level.5 

In this way, Monte Carlo simulation can combine evidence 

from a variety of sources to provide estimates over longer 

treatment and/or model durations on real-world populations. 

This can be applied to the investigation of drugs that have not 

yet been commonly prescribed or are new to market in the 

clinical practice setting, and for a broader range of outcomes 

than is typically observed in RWD. 

In this white paper we showcase how this method, when 

implemented on RWD (from here on, we will refer to it as 

RWD-based simulation), derives patient-level estimates 

of the effectiveness and safety of treatments in real-world 

populations by combining evidence on:

1. The observed patient characteristics in RWD

2. The baseline risk of disease-related events

3. The treatment efficacy
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Herein we also provide a case study demonstrating how 

Axtria’s real-world evidence/health economics and outcomes 

research (RWE/HEOR) team has developed a highly flexible 

RWD-based simulation to study the impact of a new 

cardiovascular (CV) therapy on cholesterol goal achievement 

and risk of major CV outcomes. The published manuscript 

was able to impact 2018 American College of Cardiology/

American Heart Association clinical practice guidelines on the 

treatment of high-risk atherosclerotic cardiovascular disease 

(ASCVD) patients.

Advantages of RWD-based Simulation 

The idea of simulating population outcomes is not new to 

economic modeling. Discrete event simulation, Markov 

chains, and Monte Carlo simulation have often been used 

in healthcare to improve operational efficiencies in hospital 

systems, assess the impact of drugs on patient outcomes, 

and estimate disease-related costs to healthcare systems, 

among other applications.6 Discrete event simulation 

is employed to simulate dynamic behaviors of complex 

systems and a sequence of interactions between 

individuals, populations, and their environments. However, 

the inputs are deterministic and outputs are discrete, 

thus it is not possible to generate uncertainty intervals 

for outputs of interest from a single sequence. Markov 

chains used in cost-effectiveness analyses simulate patient 

progression between health states using a homogenous 

population without patient-level outcomes. Yet, outcomes 

captured in a Markov chain model are mutually exclusive 

and simplified compared with real-world situations; i.e., 

health state transition probabilities do not depend on 

patient history. 

RWD-based simulations can overcome the challenges 

faced by other simulation techniques to estimate the 

impact of treatment in a real-world setting, specifically by:

• Evaluation over longer durations of treatment and 
follow-up vs. both RCTs and RWD (e.g., new to market 
drugs or early vs. delayed treatment initiation being a 
crucial application)

• Assessment of treatment impact by patient 
subgroups, even those not typically represented in 
RCTs or who are in a minority of patients receiving 
care in the real-world setting

• Modeling of alternate complex treatment algorithms 
according to current guideline-recommended 
strategies, allowing patients to change treatments 
throughout the simulation and inform gaps in clinical 
practice vs. guidelines

• Accounting for uncertainty and heterogeneous 
response to treatment by specifying a distribution for 
the treatment effect based on RCT evidence or clinical 
expert opinion

These features make RWD-based simulation a useful tool 

for generating brand insights and supporting a wide range 

of applications, as shown in Figure 1.

Source: Axtria Inc.

Figure 1. Applications of RWD-based Simulation 
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Figure 2. Proposed Framework for RWD-based Simulations 

The core framework of RWD-based simulation 

studies (Figure 2) includes input identification, model 

development, and generation of summary measures. 

Specific inputs to the models are identified as follows: 

1. Observed Patient Characteristics in RWD. This 
represents the population for which outcome estimates 
are desired, and key patient attributes and events 
should be specified. Potential data sources include 
EHRs, claims, and registry databases. The main 
considerations for selecting RWD sources include:

• Availability of patient-level data and a broad collection 
of key patient attributes that influence the baseline 
risk

• If used to determine baseline risk, the ability to track 
patients longitudinally for the endpoints of interest

• The ability to ensure the simulation is representative 
of the population of interest 

2. Baseline Risk of Disease-related Events. This 
represents patients’ risk of experiencing an event (e.g., 
myocardial infarction) over a given period, depending 
on patient characteristics, and can come from RWD 
or validated risk scores, like the Thrombolysis in 
Myocardial Infarction (TIMI) Risk Score for Secondary 
Prevention (TRS 20P).

3. Treatment Efficacy. This represents the patients’ risk 
with treatment. As treatment effect estimates include 
causal associations, these are preferably based on 
RCTs or well-designed RWD studies that employ robust 
statistical methods3. Alternatively, this can be informed 
by expert clinical knowledge.

The workflow of an RWD-based simulation model 

is outlined in Figure 3. In alignment with the Monte 

Carlo approach, patients are randomly sampled with 

replacements from the original real-world population 

one at a time. The patient’s baseline risk is estimated, 

Source: Axtria Inc.
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and each patient is cloned such that the patient receives 

one treatment strategy (i.e., the placebo or comparator) 

and the clone receives a second treatment strategy 

(i.e., treated). Baseline risk is modified according to the 

treatment received, and events are simulated over time. 

This process is repeated until a sufficiently large sample 

is reached (e.g., one million patients), and results are 

aggregated across the entire simulated population.

Figure 3. Overall Workflow for RWD-based Simulations

Figure 4. Structured Approach to Developing RWD-based Simulations
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Case Study: Impact of Axtria RWE & HEOR’s RWD-based 
Simulation on the 2018 American College of Cardiology/
American Heart Association Clinical Practice Guidelines 

A global pharmaceutical manufacturer launched a highly 

effective but costly alirocumab (proprotein convertase 

subtilisin/kexin type 9 inhibitor (PCSK9i)) therapy with 

a new mechanism of action into the competitive low-

density lipoprotein-cholesterol (LDL-C)-lowering market. 

To communicate the value of this new agent and guide 

evaluations of its place in therapy, a Monte Carlo patient-

level simulation model for treatment intensification 

was developed.7 The resulting model assessed the 

potential population-level benefits of cholesterol-

lowering interventions and helped the client identify and 

characterize new populations that may be eligible for 

PCSK9 inhibitor therapy. Notably, the study was cited 

in the 2018 American College of Cardiology/American 

Heart Association clinical practice guidelines as a “well-

designed” simulation study providing evidence in support 

of addition of ezetimibe to statin therapy prior to PCSK9 

inhibitor initiation, with the goal of lowering LDL-C to <70 

mg/dL (1.8 mmol/L).12

To investigate gaps in clinical practice vs. ideal guideline-

based intensification, two scenarios were modeled: 

1) real-world treatment scenario, representing payer 

restrictions, non-adherence, and statin intolerance; 2) ideal 

treatment scenario, representing no payer restrictions, full 

adherence, and no statin intolerance. The simulation was 

programmed such that cloned patients received intensified 

treatment to reach defined LDL-C goals. Figure 6 shows 

the sequence of treatment intensification used in the 

model and percentage of RWD cohort receiving treatment 

at each step. Risk based on patient characteristics and 

LDL-C level at baseline was modified according to the 

LDL-C reductions expected from post-index treatment(s) 

over time, and patient-level CV events were predicted.

Source: Axtria Inc.

Figure 5. Features of RWD-based Simulation
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1. Observed Patient Characteristics from RWD. The 
study population represented claims database patients 
at high CV risk, with known patient characteristics, 
therapies, CV event history, and LDL-C level. To address 
bias (e.g., underrepresented patients aged ≥65 years), 
the population was stratified and reweighted.

2. Baseline Risk of Disease-related Events. CV 
event risk was modeled according to a multivariate 

Cox proportional hazards model based on patients’ 
baseline characteristics, which enabled patient-specific 
prediction of time-to-event for CV events.

3. Treatment Efficacy. Estimated efficacies of expected 
LDL-C reduction and subsequent CV risk reduction with 
treatment for all treatments considered in the model were 
obtained from meta-analysis and RCT.8,9,10,11 

Source: Axtria-affiliated paper7

Abbreviations: A20 = atorvastatin 20 mg; A80 = atorvastatin 80 mg; ASCVD = atherosclerotic cardiovascular disease; ALI 75 = alirocumab 75 mg;  
ALI 150 = alirocumab 150 mg; EZE = ezetimibe; HIS = high-intensity statin; LDL-C = low-density lipoprotein cholesterol; MIS = moderate intensity statin

Figure 6. Logic of Intensification Treatment Algorithm and Proportion of Patients at Various Intensification Steps 
for the Ideal Treatment Scenario
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In the real-world cohort of patients with ASCVD (i.e., 

before treatment intensification), 51.5% of patients used 

statin monotherapy, 1.7% used statins plus ezetimibe, and 

only 25.2% achieved an LDL-C level of less than 70mg/

dL. After treatment intensification within the simulation 

model, 99.3% of patients in the cohort could achieve an 

LDL-C level of less than 70mg/dL, including 67.3% with 

statin monotherapy, 18.7% with statins plus ezetimibe, 

and 14% with add-on PCSK9 inhibitor. Subsequent model 

enhancements explored the impact of real-world limiting 

factors like non-adherence, discontinuation, and payer 

restrictions.13

Conclusions

RWD-based simulations enable the evaluation of proposed 

treatment interventions on the real-world subpopulations 

of interest and over longer time horizons than RCT or 

RWE studies. The case study described above helped 

identify appropriate target populations for a newly 

launched therapy, and resultingly, impacted clinical practice 

guidelines. With growing recognition and appreciation 

of RWE studies, additional applications of RWD-based 

simulations can extend to market access, safety and 

efficacy studies, and regulatory submissions. 
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